Formation of the structure of psychophysiological features of elite basketball players

Xiang-Qian Xu 1ABCDE, Lesia Korobeinikova 1,2,3ABCDE, Xu Li 2BCD, Mischuk Diana 1ACDE, Georgiy Korobeynikov 2,3ABCDE, Wei Han 1BCE, Uriy Sergienko 5CDE

1 Shandong Sport University, Rizhao, China
2 National University of Ukraine on Physical Education and Sport, Kyiv, Ukraine
3 German Sport University Cologne, Institute of Psychology, Cologne (Germany)
4 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
5 University of the State Fiscal Service of Ukraine

Contribution: A – Study design; B – Data collection; C – Statistical analysis; D – Manuscript Preparation; E – Funds Collection.

Abstract

Among coaches and scientists, one of the main topics is the improvement of the system for training elite athletes. Traditional studies in basketball devoted to the actual connection of study with a long training process. Training and competitive activity in basketball includes neurodynamic, psychomotor, cognitive and psycho-emotional characteristics. Modern research devoted to the characteristics of the functional states of athletes in various training and competitive conditions. But among the modern studies of team sports, there are no data on the psychophysiological states of elite athletes for different types of monitoring.

Purpose:

Development of the system of psychophysiological support of elite basketball players as an actual scientific direction in the theory and methodology of sports training

Materials and methods: The 13 elite basketball players, age 19-23 (sport experience more than 8 age) were examined. The sensory-motor response, mobility and balance of nervous process, verbal memory, operative thinking and general intelligence were studied. All of tests include the complex of computer diagnostic “Multipsychometer 05”. Also, in battery were include tests: estimates of actual psychical state (by color test Lusher), field independence (by Stroop test), motivation (by Mehrabian test) and aggressive (by Bass-Darki test). With the factors analysis the main components of psychophysiological characteristics of basketball players were obtained.

Results:

The factor’s structure of psychophysiological state of elite basketballs included 4 factors: neurodynamics, cognitive resources, energy-information and emotional-cognitive.

Conclusion:

The factor structure of psychophysiological state of elite basketball players was revealed. The identified factors can be used to correct the training process of elite athletes.

Key words: neurodynamics characteristics, cognitive properties, elite basketball player, factor’s structure.

Introduction

Modern basketball is very popular all over the world. Basketball requires athletes to quickly determine the effectiveness of actions in different situations [2, 3]. But athletes must not only fast improve their technical skills. A basketball player...
needs to take into account the active actions of the opponent and look for an adequate response [18, 19].

One of the main topics in the training of basketball players is to improve the training system to achieve high sports results [5, 6, 11].

The most important factors of the training process is the functional state of athletes. Among many components, the important properties of the functional state are: physical performance, functional fitness, adaptive capabilities, physical development, level of technical and tactical skill and psychophysiological state [12, 15, 16].

Sports results correlate with the effectiveness of individual approach in the training process of players in sports [4, 12, 17].

Training and competitive activity in basketball is supported by neurodynamics, psychomotor, cognitive, motivational and emotional components [7, 8, 14].

Analysis of current research has shown that a greater number of researchers focus on local characteristics of the functional state of athletes training and competitive activity [9, 13].

However, among modern studies of game sports there are no data on psychophysiological states in elite athletes for different types of control.

The topic of psychophysiological support in game sports is a new and undeveloped area in the system of training athletes [1, 5, 6, 20].

Thus, the development of the system of psychophysiological support of elite basketball players is a very relevant direction of the theory and methodology of sports training.

Materials and Methods

Written consent was obtained from all athletes before the procedure to use the results of the study for scientific purposes, in accordance with the recommendations of the Ethical Committee for Biomedical Research and the Declaration of Helsinki Ethics.

Thirteen elite basketball players aged 19-23 years (sports experience of more than 8 years) were examined.

The methodological approach included three blocks of test performance. The first block, “neurodynamics”, was used to assess sensory-motor reaction, mobility and balance of nervous processes. The second block, “cognitive”, offered indicators of verbal memory (for words), verbal intelligence (pattern identification) and non-verbal intelligence (Raven’s test). The third block, “cognitive-activity”, included the following tests: assessment of current mental state (Lusher color test), field independence (Stroop test), motivation (Mehrabian test) and aggressiveness (Bass-Darkey test).

Statistical analysis was performed using the computer program STATISTICA 10.0, the level of statistical significance was p<0.05.

Results

During the study we used descriptive statistical and correlation analysis and obtained 42 parameters for each person. When the number of correlations between values was limited, we used the factor analysis method (normalized by Varimax).

Factor analysis revealed informative values from a set of research methods in elite basketball players.

From the total number of values, only informative parameters that include the structure of psychophysiological state of elite basketball players were selected (Table 1).

The value of concentricity (Lüscher color test) indicates rest, pleasure, passivity. In basketball players concentricity has a low level of manifestation (Me=4.00 conventional units). Ac-

<table>
<thead>
<tr>
<th>Test</th>
<th>Values</th>
<th>Median, Lower and Upper Quartile</th>
<th>CV, %</th>
<th>Level of manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color test Lüscher</td>
<td>Concentricity, conventional units</td>
<td>4 (3; 6)</td>
<td>56.48</td>
<td>Low</td>
</tr>
<tr>
<td>Balance of nervous process</td>
<td>Accuracy, %</td>
<td>2.45 (1.92; 3.59)</td>
<td>43.03</td>
<td>Average</td>
</tr>
<tr>
<td>Functional mobility of nervous processes</td>
<td>Dynamism, conventional units</td>
<td>66.23 (62.48; 70.69)</td>
<td>10.79</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Capacity of visual analyzer, conventional units</td>
<td>1.58 (1.53; 1.74)</td>
<td>8.48</td>
<td>Below average</td>
</tr>
<tr>
<td></td>
<td>Limited time of decision making, ms</td>
<td>400 (350; 420)</td>
<td>13.83</td>
<td>Average</td>
</tr>
<tr>
<td>Visual motor response</td>
<td>Latent time of response, ms</td>
<td>305.6 (295.5; 315.5)</td>
<td>6.41</td>
<td>Low</td>
</tr>
<tr>
<td>Memory on words</td>
<td>Effectiveness, %</td>
<td>75.85 (63.65; 79.47)</td>
<td>18.83</td>
<td>High</td>
</tr>
<tr>
<td>Pattern identification</td>
<td>Productivity, conventional units</td>
<td>23 (22;23)</td>
<td>7.38</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Accuracy, conventional units</td>
<td>0.92 (0.88; 0.95)</td>
<td>7.15</td>
<td>Above average</td>
</tr>
<tr>
<td></td>
<td>Effectiveness, %</td>
<td>82.8 (74.8; 92.8)</td>
<td>15.7</td>
<td>High</td>
</tr>
<tr>
<td>Test Reven</td>
<td>Productivity, conventional units</td>
<td>9 (8; 10)</td>
<td>19.12</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Effectiveness, %</td>
<td>57.46 (47.65; 73.27)</td>
<td>40.17</td>
<td>Average</td>
</tr>
<tr>
<td>Personal aggression</td>
<td>Auto aggression, conventional units</td>
<td>2 (1; 3)</td>
<td>74.75</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Aggressiveness, conventional units</td>
<td>12 (10; 14)</td>
<td>21.34</td>
<td>Average</td>
</tr>
</tbody>
</table>
According to this indicator the group is not homogeneous.

The balance of nervous processes between the processes of excitation and inhibition indicates the state of the nervous system and personality behavior. The accuracy of test performance in elite basketball players appears at an average level and indicates the heterogeneity of the group (CV = 43.03%).

Functional mobility of neural processes determines the information processing capabilities of basketball players in limited time. Informative parameters for basketball players: dynamism (CV = 10.79%), capacity of visual analyzer (CV = 8.48%) and limited time of decision making (CV = 13.83%). The analysis shows the average manifestation of these parameters and the homogeneity of the groups.

The study of visual-motor reaction showed low reaction speed (Me = 305.60 ms). This indicates that elite basketball players have a low level of speed reaction, but it is sufficient for efficiency.

The study of verbal memory effectiveness revealed a high level of quality of test performance. The variability of memory performance has a high level of manifestation and homogeneity of the group (CV = 18.83%).

The results of the pattern identification test in all athletes showed a high level of productivity, accuracy and effectiveness (CV = 82.8%). Also this group is homogeneous in verbal test.

For the nonverbal test (Raven’s test) informative values - productivity and effectiveness - have an average level of manifestation. The results were consistent with the relevance of information processing fast and accuracy to a player’s athletic performance [10].

According to the obtained results, auto aggression and aggressiveness in elite basketball players indicate an average level of manifestation. This is due to the low level of defense mechanisms in the external environment. The analysis shows that by auto aggression the group of athletes is heterogeneous (CV = 40.17%), and by the value of effectiveness - heterogeneous (CV = 40.17%).

According to the obtained results, auto aggression and aggressiveness in elite basketball players indicate an average level of manifestation. This is due to the low level of defense mechanisms in the external environment. The analysis shows that by auto aggression the group of athletes is heterogeneous (CV = 74.75%), and by aggression - also heterogeneous (CV = 21.34%).

We obtained four factors with a sum of 62.5% in the main variance (Table 2).

The first factor, with a contribution to the total variance of 15.1%, combined the characteristics of neurodynamics. The significant parameters of this factor were: accuracy on the nerve balance test (-0.81), the Limited time of decision making on the nerve mobility test (-0.79), and the Latent time of the visual-motor reaction (-0.72). The second factor (14.9%) has more informative values are related to cognitive characteristics: productivity (-0.92), accuracy (-0.81) and effectiveness (-0.89) on the test of pattern identification.

The third factor (14.0%) was associated with peculiarities of psychical state and neurodynamics. The main parameters of this factor are: concentricity according to the Lusher color test (0.77), dynamism (-0.76) and the ability of the visual analyzer (-0.73) according to the functional mobility test. Moreover, both of these tests can have opposite directionality of vectors.

The fourth factor (18.6%) indicates the parameters of intelligence and personal aggression. Informative values in this factor are productivity (0.75) and effectiveness (0.83) by Raven’s test, autoaggression (-0.72) and general aggressiveness (-0.74). In this factor, there is an inverse relationship between the properties of intelligence and aggressiveness.

Discussion

It is traditional to use factor analysis to study the competitive activity of basketball players [5, 6, 16]. But we use this analysis to develop the structure of psychophysiological state related to the effectiveness of technical and tactical actions in elite basketball players.

The obtained results indicate the presence of four factors reflecting the psychophysiological state of elite basketball players. The first factor included indicators of neurodynamics: speed and quality of information processing. In this factor the main personality properties of athletes were observed. These results were consistent with the relevance of information processing fast and accuracy to a player’s athletic performance [10].

The second factor is related to the cognitive resources, which determines the abilities of brain activity in decision making.

Table 2 Factor structure links among psychophysiological values of elite basketball players (n=13)

<table>
<thead>
<tr>
<th>Test</th>
<th>Values</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color test Lüscher</td>
<td>Concentricity</td>
<td>-0.30</td>
<td>0.28</td>
<td>0.77</td>
<td>0.30</td>
</tr>
<tr>
<td>Balance of nervous process</td>
<td>Accuracy</td>
<td>-0.81</td>
<td>-0.19</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Dynamism, conventional units</td>
<td>-0.06</td>
<td>0.02</td>
<td>-0.76</td>
<td>0.06</td>
</tr>
<tr>
<td>Functional mobility of nervous processes</td>
<td>Capacity of visual analyzer, conventional units</td>
<td>0.27</td>
<td>-0.28</td>
<td>-0.73</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Limited time of decision making</td>
<td>-0.79</td>
<td>-0.13</td>
<td>0.12</td>
<td>-0.45</td>
</tr>
<tr>
<td>Visual motor response</td>
<td>Latent time of response</td>
<td>-0.72</td>
<td>-0.20</td>
<td>0.10</td>
<td>-0.56</td>
</tr>
<tr>
<td>Memory on words</td>
<td>Effectiveness</td>
<td>0.16</td>
<td>0.04</td>
<td>0.06</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Productivity</td>
<td>0.01</td>
<td>-0.92</td>
<td>-0.15</td>
<td>0.27</td>
</tr>
<tr>
<td>Pattern identification</td>
<td>Accuracy</td>
<td>0.043</td>
<td>-0.831</td>
<td>-0.150</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>Effectiveness</td>
<td>0.04</td>
<td>-0.89</td>
<td>-0.16</td>
<td>0.31</td>
</tr>
<tr>
<td>Test Reven</td>
<td>Productivity</td>
<td>0.47</td>
<td>-0.26</td>
<td>-0.20</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Effectiveness</td>
<td>0.25</td>
<td>-0.09</td>
<td>0.10</td>
<td>0.83</td>
</tr>
<tr>
<td>Personal aggression</td>
<td>Auto aggression</td>
<td>-0.10</td>
<td>0.38</td>
<td>0.33</td>
<td>-0.72</td>
</tr>
<tr>
<td></td>
<td>Aggressiveness</td>
<td>-0.01</td>
<td>0.20</td>
<td>0.06</td>
<td>-0.74</td>
</tr>
<tr>
<td>Summarize</td>
<td>obtained of factors with summa, %</td>
<td>15.1</td>
<td>14.9</td>
<td>14.0</td>
<td>18.6</td>
</tr>
</tbody>
</table>
making and effectiveness of tactical and technical actions. The main values of this factor indicate the presence of verbal intelligence in athletes. According to the structure, this factor can be called “cognitive resource”. Success in competitive activity is supported not only by functional abilities, but also by motor and sensory activity. One of the main properties to support competitive performance is brain activity, memory, attention and speed of mental problem solving [4].

The third factor was named “energy-informational”. The main parameter of this factor is concentricity of psychical energy. This parameter characterizes the necessity of energy accumulation and preservation. Accumulation and preservation of energy provide fast and qualitative perception and information processing of complex visual reactions.

Conclusions

The factor structure of psychophysiological state of elite basketball players was revealed. The identified factors can be used to correct the training process of elite athletes.

References

Copyright: © 2023 by the authors.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/deed).

Authors:

Xiang-Qian Xu: http://orcid.org/0000-0001-5569-9160, xxq152@gmail.com, Shandong Sport University, Rizhao, China

Lesia Korobeinikova: http://orcid.org/0000-0001-8648-316X, korlesia.66@gmail.com, National University of Ukraine of Physical Education and Sport, 02000 Fizkultury Street, Kyiv, Ukraine

Xu Li: http://orcid.org/0009-0001-0067-8474, xumichelle004@gmail.com, National University of Ukraine of Physical Education and Sport, 02000 Fizkultury Street, Kyiv, Ukraine

Mischuk Diana: http://orcid.org/0000-0001-5920-9421, diana.mischuk9@gmail.com, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056 Peremogy Avenue, 37, Kyiv, Ukraine

Georgiy Korobeynikov: http://orcid.org/0000-0002-1097-4787, k.george.65.w@gmail.com, National University of Ukraine of Physical Education and Sport, 02000 Fizkultury Street, Kyiv, Ukraine, German Sport University Cologne, Institute of Psychology, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany

Wei Han: http://orcid.org/0000-0003-3475-6116, sdtyhw@163.com, Shandong Sport University, Rizhao, China

Uriy Sergienko: http://orcid.org/0000-0003-1019-6513, sergienkofpm@gmail.com, University of the State Fiscal Service of Ukraine (State Tax University), 08205 University Street, 31, Irpin, Kyiv Region, Ukraine